People

Guillermo Gallego

Principal Investigator

Computer Vision

TU Berlin

 

Email:

 

Photo: SCIoI

← People Overview

Guillermo Gallego

Guillermo Gallego

Photo: SCIoI

Guillermo Gallego is Professor of Robotic Interactive Perception at Technische Universität Berlin and Einstein Center Digital Future (ECDF). For SCIoI, he works on computer vision and robotics. He focuses on robot perception and on optimization methods for interdisciplinary imaging and control problems. Inspired by the human visual system, he works toward improving the perception systems of artificial agents, endowing them with intelligence to transform raw sensor data into knowledge, to provide autonomy in changing environments.


Projects

Guillermo Gallego is member of:


Hamann, F., Mededovic, E., Gülhan, F., Wu, Y., Stegmaier, J., He, J., Wang, Y., Zhang, K., Li, L., Jiao, L., Ma, M., Huang, H., Yan, Y., Ren, H., Lin, X., Huang, Y., Cheng, B., Lee, S. H., Ham, G. S., … Gallego, G. (2025). SIS-Challenge: Event-based Spatio-temporal Instance Segmentation Challenge at the CVPR 2025 Event-based Vision Workshop. IEEE International Conference on Computer Vision (ICCV) Workshops. https://doi.org/10.48550/arXiv.2508.12813
Hamann, F., Gehrig, D., Febryanto, F., Daniilidis, K., & Gallego, G. (2025). ETAP: Event-based Tracking of Any Point. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 17. https://doi.org/10.48550/arXiv.2412.00133
Shiba, S., Aoki, Y., & Gallego, G. (2025). Simultaneous Motion And Noise Estimation with Event Cameras. IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.48550/arXiv.2504.04029
Yamaki, R., Shiba, S., Gallego, G., & Aoki, Y. (2025). Iterative Event-based Motion Segmentation by Variational Contrast Maximization. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) Workshops, 4918–4927. https://doi.org/10.48550/arXiv.2504.18447
Guo, S., Hamann, F., & Gallego, G. (2025). Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras. IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.48550/arXiv.2503.17262
Guo, S., & Gallego, G. (2025). Event-based Photometric Bundle Adjustment. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2025.3586497
Reinold, T., Ghosh, S., & Gallego, G. (2025). Combined Physics and Event Camera Simulator for Slip Detection. IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), 872–880. https://doi.org/10.1109/WACVW65960.2025.00104
Ghosh, S., & Gallego, G. (2025). Event-based Stereo Depth Estimation: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2025.3586559
Gallego, G., Hidalgo-Carrió, J., & Scaramuzza, D. (2025). Event-based SLAM. SLAM Handbook. From Localization and Mapping to Spatial Intelligence. https://github.com/SLAM-Handbook-contributors/slam-handbook-public-release
Hitzges, D., Ghosh, S., & Gallego, G. (2025). DERD-Net: Learning Depth from Event-based Ray Densities. Advances in Neural Information Processing Systems (NeurIPS). https://doi.org/10.48550/arXiv.2504.15863
Wang, Z., Hamann, F., Chaney, K., Jiang, W., Gallego, G., & Daniilidis, K. (2025). Event-based Continuous Color Video Decompression from Single Frames. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) Workshops, 4968–4978. https://doi.org/10.48550/arXiv.2312.00113
Rodriguez-Gomez, J. P., Martinez-de Dios, J. R., Ollero, A., & Gallego, G. (2024). On the Benefits of Visual Stabilization for Frame- and Event-based Perception. Robotics and Automation Letters, 9(10), 8802–8809. https://doi.org/10.1109/LRA.2024.3450290
Guo, S., & Gallego, G. (2024). Event-based Mosaicing Bundle Adjustment. European Conference on Computer Vision (ECCV), 479–496. https://doi.org/10.1007/978-3-031-72624-8_27
Hamann, F., Li, H., Mieske, P., Lewejohann, L., & Gallego, G. (2024). MouseSIS: A Frames-and-Events Dataset for Space-Time Instance Segmentation of Mice. European Conference on Computer Vision (ECCV) Workshops, 156–173. https://doi.org/10.1007/978-3-031-92460-6_10
Ren, Z., Liao, B., Kong, D., Li, J., Liu, P., Kneip, L., Gallego, G., & Zhou, Y. (2024). Motion and Structure from Event-based Normal Flow. European Conference on Computer Vision (ECCV), 108–125. https://doi.org/10.1007/978-3-031-72992-8_7
Wischow, M., Irmisch, P., Boerner, A., & Gallego, G. (2024). Real-Time Noise Source Estimation of a Camera Systemfrom an Image and Metadata. Advanced Intelligent Systems, 2300479, 1–15. https://doi.org/10.1002/aisy.202300479
Hamann, F., Ghosh, S., Martínez, I. J., Hart, T., Kacelnik, A., & Gallego, G. (2024). Fourier-based Action Recognition for Wildlife Behavior Quantification with Event Cameras. Advanced Intelligent Systems, 2400353. https://doi.org/10.1002/aisy.202400353
Ghosh, S., Cavinato, V., & Gallego, G. (2024). ES-PTAM: Event-based Stereo Parallel Tracking and Mapping. European Conference on Computer Vision (ECCV) Workshops, 70–87. https://doi.org/10.1007/978-3-031-92460-6_5
Niu, J., Zhong, S., Lu, X., Shen, S., Gallego, G., & Zhou, Y. (2024). ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras. IEEE Transactions on Robotics, 41, 2164–2183. https://doi.org/10.1109/TRO.2025.3548523
Hamann, F., Ghosh, S., Martínez, I. J., Hart, T., Kacelnik, A., & Gallego, G. (2024). Low-power, Continuous Remote Behavioral Localization with Event Cameras. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 18612–18621. https://doi.org/10.1109/CVPR52733.2024.01761
Hamann, F., Wang, Z., Asmanis, I., Chaney, K., Gallego, G., & Daniilidis, K. (2024). Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation. European Conference on Computer Vision (ECCV), 18–37. https://doi.org/10.1007/978-3-031-72646-0_2
Guo, S., & Gallego, G. (2024). CMax-SLAM: Event-based Rotational-Motion Bundle Adjustment and SLAM System using Contrast Maximization. IEEE Transactions on Robotics, 40, 2442–2461. https://doi.org/10.1109/TRO.2024.3378443
Shiba, S., Klose, Y., Aoki, Y., & Gallego, G. (2024). Secrets of Event-based Optical Flow, Depth and Ego-motion Estimation by Contrast Maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12), 7742–7759. https://doi.org/10.1109/TPAMI.2024.3396116
Shiba, S., Hamann, F., Aoki, Y., & Gallego, G. (2023). Event-based Background-Oriented Schlieren. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–16. https://doi.org/10.1109/TPAMI.2023.3328188
Shiba, S., Aoki, Y., & Gallego, G. (2022). Fast Event-based Optical Flow Estimation by Triplet Matching. Signal Processing Letters, 29, 2712–2716. https://doi.org/10.1109/LSP.2023.3234800
Shiba, S., Aoki, Y., & Gallego, G. (2022). A Fast Geometric Regularizer to Mitigate Event Collapse in the Contrast Maximization Framework. Advanced Intelligent Systems, 11. https://doi.org/10.1002/aisy.202200251
Zhang, Z., Yezzi, A., & Gallego, G. (2022). Formulating Event-based Image Reconstruction as a Linear Inverse Problem with Deep Regularization using Optical Flow. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3230727
Shiba, S., Aoki, Y., & Gallego, G. (2022). Event Collapse in Contrast Maximization Frameworks. Sensors, 22(14), 1–20. https://doi.org/10.3390/s22145190
Shiba, S., Aoki, Y., & Gallego, G. (2022). Secrets of Event-Based Optical Flow. European Conference on Computer Vision (ECCV), 628–645. https://doi.org/10.1007/978-3-031-19797-0_36
Hidalgo-Carrió, J., Gallego, G., & Scaramuzza, D. (2022). Event-aided Direct Sparse Odometry. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 5771–5780. https://doi.org/10.1109/CVPR52688.2022.00569
Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger, S., Davison, A., Conradt, J., Daniilidis, K., & Scaramuzza, D. (2022). Event-based Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Inteliigence, 44(1), 154–180. https://doi.org/10.1109/TPAMI.2020.3008413
Ghosh, S., & Gallego, G. (2022). Event-based Stereo Depth Estimation from Ego-motion using Ray Density Fusion. ECCVW Ego4D 2022. https://arxiv.org/abs/2210.08927
Hamann, F., & Gallego, G. (2022). Stereo Co-capture System for Recording and Tracking Fish with Frame- and Event Cameras. International Conference on Pattern Recognition (ICPR), Workshop on Visual observation and analysis of Vertebrate And Insect Behavior. https://arxiv.org/abs/2207.07332
Gu, C., Learned-Miller, E., Gallego, G., Sheldon, D., & Bideau, P. (2021). The Spatio-Temporal Poisson Point process: A simple Model for the Alignment of Event Camera Data. International Conference on Computer Vision (ICCV), 13495–13504. https://doi.org/10.1109/ICCV48922.2021.01324
Zhou, Y., Gallego, G., & Shen, S. (2021). Event-based Stereo Visual Odometry. IEEE Transactions on Robotics, 37(5), 1433–1450. https://doi.org/10.1109/TRO.2021.3062252

Outstanding Associate Editor (IEEE Robotics Automation Letters, 2021)

Der Tagesspiegel – November 2020 - Roboter mit Sinn für Orientierung

Tagesspiegel – November 2020 - Künstliche Intelligenz: Mit Sinn für Orientierung

Research

An overview of our scientific work

See our Research Projects