People

Olaf Hellwich

Principal Investigator

Computer Vision

TU Berlin

 

Email:

Phone: +49 30 314 22796

 

Photo: SCIoI

← People Overview

Olaf Hellwich

Olaf Hellwich

Photo: SCIoI

Olaf Hellwich contributes to the autonomous acquisition of prior knowledge from visual experience and the application of the priors learned from that experience. He posseses expertise in feature extraction, learning of object models from features, 3D object reconstruction, and most recently deep learning.


Projects

Olaf Hellwich is member of:


Maier, M., Leonhardt, A., Blume, F., Bideau, P., Hellwich, O., & Rahman, R. A. (2025). Neural Dynamics of Mental State Attribution to Social Robot Faces. Social Cognitive and Affective Neuroscience. https://doi.org/https://doi.org/10.1093/scan/nsaf027
Lazarides, R., Frenkel, J., Göllner, R., Petkovic, U., & Hellwich, O. (2025). ‘No words’—Machine-learning classified nonverbal immediacy and its role in connecting teacher self-efficacy with perceived teaching and student interest. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12732
Reiske, P., Boon, M. N., Andresen, N., Traverso, S., Hohlbaum, K., Lewejohann, L., Thöne-Reineke, C., Hellwich, O., & Sprekeler, H. (2025). Mouse Lockbox Dataset: Behavior Recognition for Mice Solving Lockboxes. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) CV4Animals Workshop. [not yet made public]
Blume, F., Qu, R., Bideau, P., Maier, M., Abdel Rahman, R., & Hellwich, O. (2024). How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations. GCPR 2024.
Boon, M. N., Andresen, N., Traverso, S., Meier, S., Hellwich, O., Lewejohann, L., Thöne-Reineke, C., Sprekeler, H., & Hohlbaum, K. (2024). Mouse lockbox: A sequential mechanical decision-making task to investigate complex mouse behavior. ICN 2024.
Boon, M. N., Andresen, N., Traverso, S., Meier, S., Schuessler, F., Hellwich, O., Lewejohann, L., Thöne-Reineke, C., Sprekeler, H., & Hohlbaum, K. (2024). Mechanical problem solving in mice. bioRxiv. https://doi.org/10.1101/2024.07.29.605658
Halawa, M., Blume, F., Bideau, P., Maier, M., Abdel Rahman, R., & Hellwich, O. (2024). Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition. IEEE Computer Vision and Pattern Recognition Conference Workshops (CVPRW) 2024. https://doi.org/10.48550/arXiv.2404.10904
Hall, O., Qu, R., Ouerfelli-Ethier, J., Roth, N., Hellwich, O., Obermayer, K., & Rolfs, M. (2024). Saccadic decision-making in dynamic scenes under competing task demands. EGPROC.
Hohlbaum, K., Andresen, N., Mieske, P., Kahnau, P., Lang, B., Diederich, K., Palme, R., Mundhenk, L., Sprekeler, H., Hellwich, O., Thöne-Reineke, C., & Lewejohann, L. (2024). Lockbox enrichment facilitates manipulative and cognitive activities for mice. Open Research Europe. https://doi.org/10.12688/openreseurope.17624.2
Petkovic, U., Frenkel, J., Hellwich, O., & Lazarides, R. (2024). Advancing Nonverbal Immediacy Analysis in Education: A Multimodal Computational Model Approach. Conference on the Simulation of Adaptive Behavior (SAB), 326–338. https://doi.org/10.1007/978-3-031-71533-4_26
Boon, M. N., Andresen, N., Meier, S., Hellwich, O., Lewejohann, L., Thöne-Reineke, C., Sprekeler, H., & Hohlbaum, K. (2023). Mouse lock box: a sequential mechanical decision-making task to investigate complex mouse behavior. Bernstein Conference. https://doi.org/10.12751/nncn.bc2023.056
Dolokov, A., Andresen, N., Hohlbaum, K., Thöne-Reineke, C., Lewejohann, L., & Hellwich, O. (2023). Upper Bound Tracker: A Multi-Animal Tracking Solution for Closed Laboratory Settings. 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) / VISAPP, 5, 945–952. https://doi.org/10.5220/0011609500003417
Roth, N., Rolfs, M., Hellwich, O., & Obermayer, K. (2023). Objects guide human gaze behavior in dynamic real-world scenes. PLOS Computational Biology. https://doi.org/10.1371/journal.pcbi.1011512
Halawa, M., Hellwich, O., & Bideau, P. (2022). Action based Contrastive Learning for Trajectory Prediction. European Conference on Computer Vision (ECCV), 143–159. https://doi.org/10.1007/978-3-031-19842-7_9
Maier, M., Blume, F., Bideau, P., Hellwich, O., & Abdel Rahman, R. (2022). Knowledge-Augmented Face Perception: Prospects for the Bayesian Brain-Framework to Align AI and Human Vision. Consciousness and Cognition, 101. https://doi.org/10.1016/j.concog.2022.103301
Roth, N., Bideau, P., Hellwich, O., Rolfs, M., & Obermayer, K. (2021). Modeling the influence of objects on saccadic decisions in dynamic real-world scenes. PERCEPTION / 43rd European Conference on Visual Perception (ECVP) 2021. https://journals.sagepub.com/doi/full/10.1177/03010066211059887
Roth, N., Bideau, P., Hellwich, O., Rolfs, M., & Obermayer, K. (2021). A modular framework for object-based saccadic decisions in dynamic scenes. CVPR EPIC Workshop / ArXiv:2106.06073. https://doi.org/10.48550/arXiv.2106.06073
Andresen, N., Wöllhaf, M., Hohlbaum, K., Lewejohann, L., Hellwich, O., Thöne-Reineke, C., & Belik, V. (2020). Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLOS ONE, 15(4), e0228059. https://doi.org/10.1371/journal.pone.0228059
Halawa, M., Wollhaf, M., Vellasques, E., Sanchez Sanz, U., UrkoSanz, & Hellwich, O. (2020). Learning Disentangled Expression Representations from Facial Images. arxiv and WiCV at ECCV2020. https://doi.org/10.48550/arXiv.2008.07001

Best Poster Award (VISAPP 2023)

Research

An overview of our scientific work

See our Research Projects