Marc Toussaint

TU Berlin, Learning and Intelligent Systems

Marc Toussaint represents the synthetic disciplines at the intersections of AI planning, machine learning, and robotics. In his view, a key in understanding and creating intelligence is the interplay of learning and reasoning, where learning becomes the enabler for strongly generalizing reasoning and acting in our physical world. Within SCIoI, he is interested in studying computational methods and representations to enable efficient learning and general purpose physical reasoning, and demonstrating such capabilities on real-world robotic systems.
At SCIoI, he is currently working on Project 30 and Project 39.

 

 

 

 

SCIoI Publications

Driess, D., Schubert, I., Florence, P., Li, Y., & Toussaint, and M. (2022). Reinforcement Learning with Neural Radiance Fields. NeurIPS 2022. https://dannydriess.github.io/nerf-rl
Ortiz-Haro, J., Ha, J.-S., Driess, D., & Toussaint, M. (2022). Structured deep generative models for sampling on constraint manifolds in sequential manipulation. CoRL 2021. https://argmin.lis.tu-berlin.de/papers/21-ortiz-CORL.pdf
Ha, J.-S., Driess, D., & Toussaint, M. (2022). Deep Visual Constraints: Neural Implicit Models for Manipulation Planning from Visual Input. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2022.3194955
Driess, D., Huang, Z., Li, Y., Tedrake, R., & Toussaint, M. (2022). Learning Multi-Object Dynamics with Compositional Neural Radiance Fields. CoRL 2022. https://dannydriess.github.io/compnerfdyn/
Toussaint, M., Harris, J., Ha, J.-S., Driess, D., & Hönig, W. (2022). Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of Sequential Manipulation. IROS 2022. https://www.user.tu-berlin.de/mtoussai/22-SecMPC/
Kamat, J., Ortiz-Haro, J., Toussaint, M., Pokorny, F. T., & Orthey, A. (2022). BITKOMO: Combining Sampling and Optimization for Fast Convergence in Optimal Motion Planning. IROS 2022. https://arxiv.org/pdf/2203.01751
Harris, J., Driess, D., & Toussaint, M. (2022). FC3: Feasibility-Based Control Chain Coordination. IROS 2022. https://arxiv.org/pdf/2205.04362
Toussaint, M., Harris, J., Ha, J.-S., Driess, D., & Hönig, W. (2022). Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of Sequential Manipulation. arxiv.:2203.05390. https://www.user.tu-berlin.de/mtoussai/22-SecMPC/
Schubert, I., Driess, D., Oguz, O. S., & Toussaint, M. (2021). Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS 2021. https://argmin.lis.tu-berlin.de/papers/21-schubert-NeurIPS.pdf
Driess, D., Ha, J.-S., Toussaint, M., & Tedrake, R. (2021). Learning Models as Functionals of Signed-Distance Fields for Manipulation Planning. CoRL 2021. http://arxiv.org/abs/2110.00792
Driess, D., Ha, J.-S., & Toussaint, M. (2021). Learning to solve sequential physical reasoning problems from a scene image. The International Journal of Robotics Research, 40(12–14), 1435–1466. https://doi.org/10.1177/02783649211056967